大模型技术正悄然改变证券投顾业态。
【资料图】
记者获悉,目前多家券商正在研发基于大模型技术的证券投顾产品。与此同时,第三方在线投资决策解决方案提供商也纷纷抢占先机,推出基于大模型技术的证券投资数字人产品。
一位券商人士向记者透露,这背后,是传统证券投顾服务已无法满足广大股票投资者的需求。数据显示,70%的个人投资者每天至少花费逾30分钟用于阅读财经资讯,逾50%个人投资者还要额外花费逾30分钟观看财经短视频,每天花费逾3个小时获取各类财经信息的人数则占股民群体总数的10%。
与此形成反差的是,随着上市公司数量越来越多,上市公司研报与市场分析观点越来越丰富,这些股民日益感到“时间不够用”,所以券商计划研发基于大模型技术的证券投顾产品,通过AI自动生成内容,快速精准全面地解决股民获取上市公司各类信息需求。
但记者多方了解到,要做好这项工作,绝非易事——如何精准全面地回答股民“千差万别”的提问,就是一大挑战。
九方智投副总兼产品技术负责人张福明向记者透露,要解决这项挑战,需要大模型融合知识图谱、事理图谱、分析师观点、上市公司财报研报等众多信息,通过反复预训练进行“信息弥合”,才能快速给股民“答疑解惑”。
“这背后,是基于大模型技术的证券投顾产品还需要强大算力,以及其他大模型技术的助力。”他直言。
记者获悉,基于大模型技术的证券投顾产品还面临一大挑战,就是AI生成内容能否做到“合规”——不存在承诺收益率、夸大股票投资收益前景等误导投资者的话术。
这令不少券商颇感头疼,因为他们发现AI生成内容未必“受控”,一旦出现上述误导投资者内容,则很可能面临监管部门问责。
张福明直言,为了解决这个问题,他们决定从输入、输出两个关键环节做起,无论是输入端——领域大模型的训练语料信息,还是输出端——大模型的生成内容均须通过AI合规能力矩阵的模型服务检测,保证大模型输出内容的合规性。
“如果在源头输入与信息输出两端均实现内容合规,即在输入高质量数据集与输出合法合规内容的双重保障下,提供给投资者的AI生成内容可保持在安全合规边界内。”他直言。但为了确保万无一失,他们仍需不断加快大模型迭代速度,及时杜绝各个隐患出现。
证券投顾大模型的诸多挑战记者多方了解到,要让大模型技术成功应用在证券投顾场景,绝非易事。
目前,部分券商为了加快相关产品研发,采取“套壳方式”,即在通用大模型基础上加入某些指令微调,从而研发大模型证券投顾产品。
但是,这类产品往往会出现“答非所问”状况。比如当投资者问起“我的某只股票为何今天没有跟随指数上涨”,“目前我投资的某只股票所属行业发展趋势与上下游业绩状况如何”等相对复杂问题时,通用大模型未必能给出针对性的答案。
在张福明看来,用于证券投顾的大模型技术,需要自研,才能在感知能力、思维决策、内容输出能力等方面呈现专业性、严谨性与准确性。
“事实上,证券投顾的大模型技术底层语料信息相当复杂,包括知识图谱(产业链上中下游全貌)、事理图谱(事件脉络及影响关系等投资逻辑)、分析师观点与上市公司财报研报等。这都需要专业金融机构长期积累。”他告诉记者。此外,专业金融机构还需了解投资者经常提出的问题,以及这些问题所需的解答方向,才能对这些底层语料信息进行有针对性的反复预训练,达到精准答复的效果。
他直言,为了自研九章证券领域大模型,将积累10多年的宏观数据、行情数据、资讯数据、公告数据等行业通用知识库以及深度研报、特色指标、政策解读、市场分析、热点题材、课程教学、首席诊股、公告掘金等特色知识库融合,完成大模型证券行业知识增强训练,确保大模型具备证券领域的语言理解、文本生成、对话问答、逻辑推理等能力。
“未来,我们计划将上市公司更多财报研报融入大模型训练范畴,进一步丰富AI生成内容,解答投资者更多疑问。”张福明向记者指出。
在业内人士看来,尽管通过一段时间的预训练,证券领域大模型开始具备诸多能力,但在实际操作环节,AI生成内容能否做到“万无一失”的合规,仍是一大挑战。
毕竟,不同投资者对证券领域大模型的“内容解答需求”截然不同,对“金融小白”而言,他主要通过大模型快速获取各类金融信息,加深对上市公司的了解;对“职业股民”而言,他更希望大模型能提供大盘分析、挖掘板块、热点追踪等服务;对专业投资人而言,他还希望大模型能提供策略生成、个股诊断、事件推理、情绪陪伴等服务体验,但面对不同投资者的差异化需求,证券领域大模型的每次“AI生成解答”能否都做到合规(不存在任何承诺收益或夸大股票投资收益等误导话术),挑战不小。
记者了解到,部分券商对此尝试多个大模型底层技术,但效果甚微。其中一个重要原因,是当新语料内容加入大模型预训练后,AI生成内容时常会出现一些“误导投资者”的措辞。
张福明对此指出,要解决这个问题,专业金融机构需要从源头输入与信息输出两端做好合规监测。在此双重保障下,提供给投资者的AI生成内容就能够保持在安全合规边界内。此外,专业金融机构还需对大模型不断迭代升级,持续建立完善、有效的合规审核过滤机制,确保大模型技术能始终给出合规的“解答”。
在他看来,要做好这项工作,自研大模型是不可或缺的。即便它需要专业金融机构的长期投入。
千人千面投顾服务时代来临?值得注意的是,随着大模型技术开始应用在证券投顾场景,业界普遍认为“千人千面”投顾服务时代或悄然渐行渐近。
上述券商人士向记者透露,大模型技术正令“千人千面”证券投顾服务颇具可行性。只要大模型能正确识别每个投资者的差异化信息需求、信息表达风格偏好等,就能做到因人而异的投顾服务。
但他直言,要做好这项工作,还需解决一大挑战,就是如何让大模型能准确识别每个投资者的差异化信息需求与信息表达风格偏好等。这背后,是大模型投顾产品研发者需做好两件事,一是向大模型输入不同投资者的性格特点、问答偏好等信息,以便大模型更准确地“了解”投资者不同特征;二是在大模型预训练环节,能针对不同投资者性格与问答偏好,对同一个内容话题进行差异化“训练”,从而产生不同表达风格的话术。
“这需要大模型做大量的内容拟人化训练。”张福明告诉记者。九章证券领域大模型与科大讯飞星火认知大模型开展合作,一个重要目的就是提振AI生成内容的“拟人化”能力,可以让它适应不同投资者的问答偏好。
他透露,通过调研发现,不少投资者不喜欢四平八稳的解答,有些偏好语调活泼一些,有些则希望语气亲和力强,也有投资者更强调通俗简短。
在张福明看来,当证券投顾大模型能充分实现AI生成内容“拟人化”,千人千面证券投顾服务的基础将更加牢固。
“我们还与科大讯飞星火认知大模型还在开展一系列新合作,在投顾场景及时准确地解答投资者其他非相关问题,提供有温度、人性化、多场景的产品服务体验。”他向记者表示。如此证券投顾大模型或许才能实现真正意义上的“千人千面服务”。